
EECS3311 Software Design (Fall 2020)

Q&A - Lecture Series W5

Tuesday, October 20

When comparing two expanded classes, “=” and “~” are
exactly the same?

Let’s say x and y are instances of the same class, and within
that class there is some reference type attribute called `r`.
When we do `x = y`, are we doing a reference comparison of
all the attributes (e.g., `x.r = y.r`)?

And when we do `x ~ y`, we’re doing a content comparison
(e.g., `x.r ~ y.r`)?

Or is it the case that when we compare two expanded
objects of the same type, we’re always comparing contents,
regardless of the equal symbol? So even when we do `x = y`,
it’ll just be `x.r ~ y.r`?

-

"

→
-
-

= a

0-5 fault version
② * depends each att .

-- compared
not always. 0 no

, x. r=y.r using② it depends . ② redefined
-
-£5 version

-↳⇒¥eatusag=1-
② * depends .

Expanded Class vs Deep Copying (4)
local
 eb1, eb2: B1
 eb3, eb4: B2
 b1,b2: BOOLEAN
do
 ...
 eb1 = eb2
 eb3 ~ eb4
 ...
end

Equality and Dynamic Binding

⑦ ⑦
0 . ↳

=e¥ . - equal
~ default version
{ ' '

=
"

- . I eb3=eb4

=eb3 .

.

I o I

Expanded Class vs Deep Copying (5)
Incompatible Types

- -

default
- -0→ redefined.
'

-
-

%:
(not calling

0 any version of
⇒
- equal) .

= us . is - equal
D. expanded

= = n E TS
- equal

When you define a to default version C
' '

to

class
, if objects of that class

=

compare each

maybe compared using us ② redefined version
""

② reference "9%4%1 equal. ffa¥default
or""

=
: compare by reference o¥eqd%IIat

~ = A-equal→
D default version (

' '

I' to
=

compare att)
② redefined version

Use as a Constructor but Not a Command
class SUPPLIER

create
 make

feature
 make (init_i: INTEGER)
 do
 i := init_i
 end

feature
 i: INTEGER
end

class CLIENT_2
 ...
 test: BOOLEAN
 local
 s, old_s: SUPPLIER
 do
 create s.make (5)
 old_s := s
 create s.make (5)
 print (old_s = s)
 old_s := s
 s.make (7)
 print (old_s = s)
 end
end

"%f¥I%

i÷÷÷÷*:÷÷÷.\ Being able to
use make' as a
wntr does not
- require that you're--

able to A da
--

command .

I ft: I

We can avoid initializing the object as expanded classes do it by default.

However, I was wondering in a class where we can have
multiple constructors (some classes have make_empty and
make_from_tuple) , how will expanded classes work in that case or are
they allowed to have multiple constructors?

- -

Implicitly , an expanded
object obj

is initialized as :

expanded class B create

expanded class A - - -
oIjde

- - implicitly : create d-C- a# default
-
create

E. INTEGER
defaulter

oa : A1dm!¥ " * ¥:/ rents

-
- 0C

.

. 5 's

Use of Distinct DATA_ACCESS Objects

access, access_other: DATA_ACCESS
d1,d2 : DATA
...
d1 := access.data
d2 := access_other.data

e-

:* iii.

expanded # D- A 1⇒d'
data :B-D ④ D-A

onI#@end a D-A-CHILD
end % dodl.dz :B -D

9. I =⑨÷d.d
⑧ :=a2do%dexpanded class D-A-CHILD
, can

⇒

expanded # D- A ⇐d 'd
data :B-17 ④ D-A

onI⑦@end a¥
""

T.fi .me at.dk
-
same object ?

expanded-dass-D-A.CH#DdD:=a2data=7nd
redefine data Id at ④ can

and data:Be -0kt . f¥

user- hommands

o
.

-
i'

model : Book FE¥f#t FEETm¥¥ba :B#taEss⇒¥ ×
×

⇐
a

5¥ .

remotelabx
×

github
"

